• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance
 
  • Details
  • Full
Options
2011
Journal Article
Title

Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance

Abstract
Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LEDbacklit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian × m2) [W/(sr × m2)], 2.1 × 1013 photons/(cm2 × s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr × m2), 0.7 × 10 13 photons/(cm2 × s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 H z) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by "explicit timing"; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.
Author(s)
Cajochen, Christian
Frey, Sylvia
Anders, Doreen
Späti, Jakub
Bues, Matthias  
Pross, Achim
Mager, Ralph
Wirz-Justice, Anna
Stefani, Oliver
Journal
Journal of applied physiology  
DOI
10.1152/japplphysiol.00165.2011
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024