• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization
 
  • Details
  • Full
Options
2019
Journal Article
Title

Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization

Abstract
Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications.
Author(s)
Mergel, Olga
Schneider, Sabine
Tiwari, Rahul
Kühn, Philipp T.
Keskin, Damla
Stuart, Marc C.A.
Schöttner, Sebastian
Kanter, Martinus Jacobus Maria de
Noyong, Michael
Caumanns, Tobias
Mayer, Joachim  
Janzen, Christoph  
Simon, Ulrich
Gallei, Markus
Wöll, Dominik
Rijn, Patrick van
Plamper, Felix A.
Journal
Chemical Science  
Open Access
DOI
10.1039/c8sc04369h
Additional link
Full text
Language
English
Fraunhofer-Institut für Lasertechnik ILT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024