• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Nonlinear nanoresonators for Bell state generation
 
  • Details
  • Full
Options
February 2024
Journal Article
Title

Nonlinear nanoresonators for Bell state generation

Abstract
Entangled photon states are a fundamental resource for optical quantum technologies and investigating the fundamental predictions of quantum mechanics. Up to now such states are mainly generated in macroscopic nonlinear optical systems with elaborately tailored optical properties. In this theoretical work, we extend the understanding on the generation of entangled photonic states toward the nanoscale regime by investigating the fundamental properties of photon-pair generation in sub-wavelength nonlinear nanoresonators. Taking materials with Zinc-Blende structure as an example, we reveal that such systems can naturally generate various polarization-entangled Bell states over a very broad range of wavelengths and emission directions, with little to no engineering needed. Interestingly, we uncover different regimes of operation, where polarization-entangled photons can be generated with dependence on or complete independence from the pumping wavelength and polarization, and the modal content of the nanoresonator. Our work also shows the potential of nonlinear nanoresonators as miniaturized sources of biphoton states with highly complex and tunable properties.
Author(s)
Weissflog, Maximilian A.
Dezert, Romain
Vinel, Vincent
Gigli, Carlo
Leo, Giuseppe
Pertsch, Thomas  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Setzpfandt, Frank  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Borne, Adrien
Saravi, Sina
Journal
Applied Physics Reviews  
Open Access
DOI
10.1063/5.0172240
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024