• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. DustNet++: Deep Learning-Based Visual Regression for Dust Density Estimation
 
  • Details
  • Full
Options
2025
Journal Article
Title

DustNet++: Deep Learning-Based Visual Regression for Dust Density Estimation

Abstract
Detecting airborne dust in standard RGB images presents significant challenges. Nevertheless, the monitoring of airborne dust holds substantial potential benefits for climate protection, environmentally sustainable construction, scientific research, and various other fields. To develop an efficient and robust algorithm for airborne dust monitoring, several hurdles have to be addressed. Airborne dust can be opaque or translucent, exhibit considerable variation in density, and possess indistinct boundaries. Moreover, distinguishing dust from other atmospheric phenomena, such as fog or clouds, can be particularly challenging. To meet the demand for a high-performing and reliable method for monitoring airborne dust, we introduce DustNet++, a neural network designed for dust density estimation. DustNet++ leverages feature maps from multiple resolution scales and semantic levels through window and grid attention mechanisms to maintain a sparse, globally effective receptive field with linear complexity. To validate our approach, we benchmark the performance of DustNet++ against existing methods from the domains of crowd counting and monocular depth estimation using the Meteodata airborne dust dataset and the URDE binary dust segmentation dataset. Our findings demonstrate that DustNet++ surpasses comparative methodologies in terms of regression and localization capabilities.
Author(s)
Michel, Andreas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Weinmann, Martin
Karlsruher Institut für Technologie
Küster, Jannick  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
AlNasser, Faisal
MIT School of Engineering
Gomez, Tomas
Meteodata
Falvey, Mark
Meteodata
Schmitz, Rainer
Meteodata
Hinz, Stefan
Karlsruher Institut für Technologie
Middelmann, Wolfgang  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Journal
International Journal of Computer Vision  
Open Access
DOI
10.1007/s11263-025-02376-9
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Airborne dust detection

  • Attention

  • Machine learning

  • Visual regression

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024