• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract)
 
  • Details
  • Full
Options
July 1, 2022
Conference Paper
Title

Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract)

Abstract
For many years, link prediction on knowledge. graphs has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference over unseen and emerging entities. Still, all these approaches only consider triple-based KGs, whereas their richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet been properly studied. In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks. Our experiments on a novel set of benchmarks show that qualifiers over typed edges can lead to performance improvements of 6% of absolute gains (for the Hits@10 metric) compared to triple-only baselines. Our code is available at https://github.com/mali-git/hyper_relational_ilp.
Author(s)
Ali, Mehdi  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berrendorf, Max
Ludwig-Maximilians-Universität München
Galkin, Mikhail  
Université McGill
Thost, Veronika
MIT-IBM Watson AI Lab
Ma, Tengfei
MIT-IBM Watson AI Lab
Tresp, Volker
Ludwig-Maximilians-Universität München
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022. Proceedings  
Project(s)
01IS18050F  
Munich Center for Machine Learning
Funder
Deutsches Bundesministerium für Bildung und Forschung  
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Joint Conference on Artificial Intelligence 2022  
DOI
10.24963/ijcai.2022/731
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Knowledge graph

  • Forecasting

  • Graph neural networks

  • Absolute gain

  • Inductive link

  • Link prediction

  • Extended abstracts

  • Performance

  • Prediction tasks

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024