• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Deep Reinforcement Fuzzing
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Deep Reinforcement Fuzzing

Abstract
Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q -learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions performed on an initial program input, the fuzzing agent learns a policy that can next generate new higher-reward inputs. We have implemented this new approach, and preliminary empirical evidence shows that reinforcement fuzzing can outperform baseline random fuzzing.
Author(s)
Böttinger, K.
Godefroid, P.
Singh, R.
Mainwork
IEEE Symposium on Security and Privacy Workshops, SPW 2018. Proceedings  
Conference
Symposium on Security and Privacy (SP) 2018  
Open Access
DOI
10.1109/SPW.2018.00026
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024