• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Efficient Explainable Face Verification based on Similarity Score Argument Backpropagation
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Efficient Explainable Face Verification based on Similarity Score Argument Backpropagation

Abstract
Explainable Face Recognition is gaining growing attention as the use of the technology is gaining ground in security-critical applications. Understanding why two face images are matched or not matched by a given face recognition system is important to operators, users, and developers to increase trust, accountability, develop better systems, and highlight unfair behavior. In this work, we propose a similarity score argument backpropagation (xSSAB) approach that supports or opposes the face-matching decision to visualize spatial maps that indicate similar and dissimilar areas as interpreted by the underlying FR model. Furthermore, we present Patch-LFW, a new explainable face verification benchmark that enables along with a novel evaluation protocol, the first quantitative evaluation of the validity of similarity and dissimilarity maps in explainable face recognition approaches. We compare our efficient approach to state-of-the-art approaches demonstrating a superior trade-off between efficiency and performance. The code as well as the proposed Patch-LFW is publicly available at: https://github.com/marcohuber/xSSAB.
Author(s)
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Luu, Anh Thi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Terhörst, Philipp  
Universität Paderborn  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2024. Proceedings  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Conference
Winter Conference on Applications of Computer Vision 2024  
DOI
10.1109/WACV57701.2024.00467
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • LTA: Generation, capture, processing, and output of images and 3D models

  • Biometrics

  • Face recognition

  • Machine learning

  • Deep learning

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024