• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Generation of realistic multi-energetic cone-beam CT datasets based on medical software phantoms
 
  • Details
  • Full
Options
September 1, 2025
Journal Article
Title

Generation of realistic multi-energetic cone-beam CT datasets based on medical software phantoms

Abstract
Multi-energy reconstructions have become an important research field in computed tomography in recent years. Since modern reconstruction and postprocessing techniques often employ deep learning strategies, there is a high need for large, diverse and adaptable multi-energy datasets. Therefore, this work proposes a straightforward pipeline for the generation of multi-energy cone-beam CT projection data based on the established XCAT software phantom with arbitrary desired X-ray spectra. We evaluate the effort and time required for dataset generation and utilize the generated data for model-based iterative reconstruction exemplarily. This approach provides an understanding of the current pipeline’s bottlenecks while demonstrating its suitability in producing high-quality projection datasets and reconstructions. Thus, we contribute to open knowledge on generation of large multi-energetic CT datasets for deep learning purposes.
Author(s)
Hellwege, Laura  orcid-logo
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Gensana Claus, Carla
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Schaar, Moritz
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Buzug, Thorsten
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Stille, Maik  orcid-logo
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Journal
Current directions in biomedical engineering  
Conference
Joint Annual Conference of the Austrian, German and Swiss Societies for Biomedical Engineering 2025  
Open Access
File(s)
Download (2.23 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1515/cdbme-2025-0242
10.24406/publica-6122
Additional link
Full text
Language
English
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Keyword(s)
  • Multi-energy CT

  • simulation

  • deep learning

  • data generation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024