• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Golden Model-Free Hardware Trojan Detection by Classification of Netlist Module Graphs
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Golden Model-Free Hardware Trojan Detection by Classification of Netlist Module Graphs

Abstract
In a world where increasingly complex integrated circuits are manufactured in supply chains across the globe, hardware Trojans are an omnipresent threat. State-of-the-art methods for Trojan detection often require a golden model of the device under test. Other methods that operate on the netlist without a golden model cannot handle complex designs and operate on Trojan-specific sets of netlist graph features. In this work, we propose a novel machine-learning-based method for hardware Trojan detection. Our method first uses a library of known malicious and benign modules in hierarchical designs to train an eXtreme Gradient Boosted Tree Classifier (XGBClassifier). For training, we generate netlist graphs of each hierarchical module and calculate feature vectors comprising structural characteristics of these graphs. After the training phase, we can analyze the synthesized hierarchical modules of an unknown design under test. The method calculates a feature vector for each module. With this feature vector, each module can be classified into either benign or malicious by the previously trained XGBClassifier. After classifying all modules, we derive a classification for all standard cells in the design under test. This technique allows the identification of hardware Trojan cells in a design and highlights regions of interest to direct further reverse engineering efforts. Experiments show that this approach performs with >97 % Sensitivity and Specificity across available and newly generated hardware Trojan benchmarks and can be applied to more complex designs than previous netlist-based methods while maintaining similar computational complexity.
Author(s)
Hepp, A.
Fakultät für Elektrotechnik und Informationstechnik, Technische Universität München
Baehr, J.
Fakultät für Elektrotechnik und Informationstechnik, Technische Universität München
Sigl, Georg  
Technische Universität München  
Mainwork
Design, Automation & Test in Europe Conference & Exhibition, DATE 2022. Proceedings  
Project(s)
Systeme und Methoden für die Analyse und Rekonstruktion höchstintegrierter Sicherheitsschaltungen  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Design, Automation & Test in Europe Conference & Exhibition 2022  
DOI
10.23919/DATE54114.2022.9774760
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024