• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Direct laser interference patterning of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) thin films
 
  • Details
  • Full
Options
2009
Journal Article
Title

Direct laser interference patterning of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) thin films

Abstract
We have developed a patterning procedure based on selective ablation using interference patterns with ns-laser pulses to fabricate periodic arrays on large areas of poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonic acid) (PEDOT-PSS) thin films over a metallic gold-palladium layer. Single pulse laser-ablation experiments were performed to study the ablation characteristics of the thin films as a function of the film thickness. The ablation threshold fluence of the PEDOT-PSS films was found to be dependent on thickness with values ranging from 43 mJ/cm(2) to 252 mJ/cm(2). Additionally, fluences at which the PEDOT-PSS films could be ablated without inducing damage in the underlying metallic films were observed (128 mJ/cm(2) and 402 mJ/cm(2) for film thicknesses of 70 nm and 825 nm, respectively). Linear periodic arrays with line spacings of 7.82 mu m and 13.50 mu m were also fabricated. The surface topography of these arrays was analyzed using scanning electron and atomic force microscopy. For thicker polymeric layers, several peeled sub-layers of the conjugated polymer with average thicknesses of about 165-185 nm were observed in the ablation experiments. The size and scale of structures produced by this technique could be suitable for several biomedical applications and devices in which controlling cell adhesion, promoting cell alignment, or improving biocompatibility are important.
Author(s)
Lasagni, A.F.
Hendricks, J.L.
Shaw, C.M.
Yuan, D.J.
Martin, D.C.
Das, S.
Journal
Applied surface science  
DOI
10.1016/j.apsusc.2009.06.130
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024