• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Transparent autoencoding of network packets with self-attention-based transformers
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Transparent autoencoding of network packets with self-attention-based transformers

Abstract
Deep learning based autoencoders are a promising technology for network-based attack detection systems. They provide advantages for the handling of unknown network traces or new attack signatures. Especially for the application in critical infrastructures (e.g. in power supply) intrusion detection systems have to fulfill high requirements regarding the model accuracy and trustfulness. Transformers represent the state-of-the-art for learning from sequential data and provide more model insight through the wide-spread use of attention mechanisms. This paper presents a transformer-based network autoencoder using self-attention mechanisms within a two-stage encoder and decoder design. First results on the ISCX-IDS 2012 benchmark dataset are shown including a visualization of the encoder attention weights for exemplary network packet sequences.
Author(s)
Kummerow, Andre  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Esrom, Abrha
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Nicolai, Steffen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bretschneider, Peter  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
48th IEEE Conference on Local Computer Networks, LCN 2023. Proceedings  
Conference
Conference on Local Computer Networks 2023  
DOI
10.1109/lcn58197.2023.10223390
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024