• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. One IDS Is Not Enough! Exploring Ensemble Learning for Industrial Intrusion Detection
 
  • Details
  • Full
Options
2024
Conference Paper
Title

One IDS Is Not Enough! Exploring Ensemble Learning for Industrial Intrusion Detection

Abstract
Industrial Intrusion Detection Systems (IIDSs) play a critical role in safeguarding Industrial Control Systems (ICSs) against targeted cyberattacks. Unsupervised anomaly detectors, capable of learning the expected behavior of physical processes, have proven effective in detecting even novel cyberattacks. While offering decent attack detection, these systems, however, still suffer from too many False-Positive Alarms (FPAs) that operators need to investigate, eventually leading to alarm fatigue. To address this issue, in this paper, we challenge the notion of relying on a single IIDS and explore the benefits of combining multiple IIDSs. To this end, we examine the concept of ensemble learning, where a collection of classifiers (IIDSs in our case) are combined to optimize attack detection and reduce FPAs. While training ensembles for supervised classifiers is relatively straightforward, retaining the unsupervised nature of IIDSs proves challenging. In that regard, novel time-aware ensemble methods that incorporate temporal correlations between alerts and transfer-learning to best utilize the scarce training data constitute viable solutions. By combining diverse IIDSs, the detection performance can be improved beyond the individual approaches with close to no FPAs, resulting in a promising path for strengthening ICS cybersecurity.
Author(s)
Wolsing, Konrad
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Kus, Dominik
Rheinisch-Westfälische Technische Hochschule Aachen
Wagner, Eric
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Pennekamp, Jan
Rheinisch-Westfälische Technische Hochschule Aachen
Wehrle, Klaus
Rheinisch-Westfälische Technische Hochschule Aachen
Henze, Martin  
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Mainwork
Computer Security - ESORICS 2023. Proceedings. Part II  
Conference
European Symposium on Research in Computer Security 2023  
DOI
10.1007/978-3-031-51476-0_6
Language
English
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Keyword(s)
  • Ensemble Learning

  • ICS

  • Intrusion Detection

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024