• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
 
  • Details
  • Full
Options
2021
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Titel

Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety

Titel Supplements
Published on arXiv
Abstract
The use of deep neural networks (DNNs) in safety-critical applications like mobile health and autonomous driving is challenging due to numerous model-inherent shortcomings. These shortcomings are diverse and range from a lack of generalization over insufficient interpretability to problems with malicious inputs. Cyber-physical systems employing DNNs are therefore likely to suffer from safety concerns. In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged. This work provides a structured and broad overview of them. We first identify categories of insufficiencies to then describe research activities aiming at their detection, quantification, or mitigation. Our paper addresses both machine learning experts and safety engineers: The former ones might profit from the broad range of machine learning (ML) topics covered and discussions on limitations of recent methods. The latter ones might gain insights into the specifics of modern ML methods. We moreover hope that our contribution fuels discussions on desiderata for ML systems and strategies on how to propel existing approaches accordingly.
Author(s)
Houben, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Abrecht, Stephanie
Robert Bosch GmbH
Akila, Maram
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Bär, Andreas
TU Braunschweig
Brockherde, Felix
umlaut AG
Feifel, Patrick
Opel Automobile GmbH
Fingscheidt, Tim
TU Braunschweig
Gannamaneni, Sujan Sai
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Ghobadi, Seyed Eghbal
Opel Automobile GmbH
Hammam, Ahmed
Opel Automobile GmbH
Haselhoff, Anselm
HS Ruhr West
Hauser, Felix
Karlsruhe Institute of Technology
Heinzemann, Christian
Robert Bosch GmbH
Hoffmann, Marco
QualityMinds GmbH
Kapoor, Nikhil
Volkswagen AG
Kappel, Falk
ZF Friedrichshafen AG
Klingner, Marvin
Karlsruhe Institute of Technology
Kronenberger, Jan
HS Ruhr West
Küppers, Fabian
HS Ruhr West
Löhdefink, Jonas
TU Braunschweig
Mlynarski, Michael
QualityMinds GmbH
Mock, Michael
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Mualla, Firas
ZF Friedrichshafen AG
Pavlitskaya, Svetlana
FZI Research Center for Information Technology
Poretschkin, Maximilian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Pohl, Alexander
QualityMinds GmbH
Ravi-Kumar, Varun
Valeo S.A.
Rosenzweig, Julia
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Rottmann, Matthias
University of Wuppertal
Rüping, Stefan
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Sämann, Timo
Valeo S.A.
Schneider, Jan David
Volkswagen AG
Schulz, Elena
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Schwalbe, Gesina
Continental AG
Sicking, Joachim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Srivastava, Toshika
Audi AG
Varghese, Serin
Volkswagen AG
Weber, Michael
FZI Research Center for Information Technology
Wirkert, Sebastian
Bayerische Motorenwerke AG
Wirtz, Tim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Woehrle, Matthias
Robert Bosch GmbH
Project(s)
ML2R
Funder
Bundesministerium für Wirtschaft und Energie BMWi (Deutschland)
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
DOI
10.24406/publica-fhg-414247
10.24406/publica-fhg-414247
File(s)
N-634654.pdf (645.41 KB)
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Tags
  • trustworthy AI

  • machine learning

  • automated driving

  • Safety Concerns

  • Safe AI

  • AI Safeguarding

  • KI Absicherung

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022