• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Parallel statistical multiresolution estimation for image reconstruction
 
  • Details
  • Full
Options
2016
Journal Article
Titel

Parallel statistical multiresolution estimation for image reconstruction

Abstract
We show that a careful parallelization of statistical multiresolution estimation (SMRE) improves the phase reconstruction in X-ray near-field holography. The central step in, and the computationally most expensive part of, SMRE methods is Dykstra's algorithm. It projects a given vector onto the intersection of convex sets. We discuss its implementation on NVIDIA's compute unified device architecture (CUDA). Compared to a CPU implementation parallelized with OpenMP, our CUDA implementation is up to one order of magnitude faster. Our results show that a careful parallelization of Dykstra's algorithm enables its use in large-scale statistical multiresolution analyses.
Author(s)
Kramer, S.C.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Hagemann, J.
Ku&nneke, L.
Lebert, J.
Zeitschrift
SIAM journal on scientific computing
Thumbnail Image
DOI
10.1137/15M1020332
Language
English
google-scholar
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022