• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Wildlife Species Classification on the Edge: A Deep Learning Perspective
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Wildlife Species Classification on the Edge: A Deep Learning Perspective

Abstract
Accurate and timely recognition of wild animal species is very important for various management processes in nature conservation. In this article, we propose an energy-efficient way of classifying animal species in real-time. Specifically, we present an image classification system on a low power Edge-AI device, which embeds a deep neural network (DNN) in a microcontroller that accurately recognizes different animal species. We evaluate the performance of the proposed system using a real-world dataset collected via a small handheld camera from remote conservation regions of Africa. We implement different DNN models and deploy them on the embedded device to perform real-time classification of animal species. The experimental results show that the proposed animal species classification system is able to obtain a remarkable accuracy of 84.30% with an energy efficiency of 0.885 mJ on an edge device. This work provides a new perspective toward low power, energy-efficient, fast and accurate edge-AI technology to help in inhibiting wildlife-human conflicts.
Author(s)
Ingaleshwar, Subodh
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Thasharofi, Farid
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Avila Pava, Mateo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Vaishya, Harshit
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Tabak, Yazan
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Ernst, Jürgen  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Portas, Ruben
Rast, Wanja
Melzheimer, Joerg
Aschenborn, Ortwin
Götz, Theresa  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Göb, Stephan
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
16th International Conference on Agents and Artificial Intelligence, ICAART 2024. Proceedings. Vol.3  
Conference
International Conference on Agents and Artificial Intelligence 2024  
Open Access
DOI
10.5220/0012376700003636
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Animal Species

  • Applied Conservation

  • Artificial Intelligence (AI)

  • Deep Neural Networks

  • Embedded Systems

  • Energy Efficient

  • Image Classification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024