• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Protein-ligand data at scale to support machine learning
 
  • Details
  • Full
Options
2025
Review
Title

Protein-ligand data at scale to support machine learning

Abstract
Target 2035 is a global initiative that aims to develop a potent and selective pharmacological modulator, such as a chemical probe, for every human protein by 2035. Here, we describe the Target 2035 roadmap to develop computational methods to improve small-molecule hit discovery, which is a key bottleneck in the discovery of chemical probes. Large, publicly available datasets of high-quality protein-small-molecule binding data will be created using affinity-selection mass spectrometry and DNA-encoded chemical library screening. Positive and negative data will be made openly available, and the machine learning community will be challenged to use these data to build models and predict new, diverse small-molecule binders. Iterative cycles of prediction and testing will lead to improved models and more successful predictions. By 2030, Target 2035 will have identified experimentally verified hits for thousands of human proteins and advanced the development of open-access algorithms capable of predicting hits for proteins for which there are not yet any experimental data.
Author(s)
Edwards, Aled M.
University of Toronto
Owen, Dafydd R.
Pfizer Inc.
Ackloo, Suzanne Z.
University of Toronto
Antolín, Albert A.
Institute Catala Oncologia
Arrowsmith, Cheryl H.
University of Toronto
Axtman, Alison D.
UNC Eshelman School of Pharmacy
Baghaie, A.J.
X-Chem, Inc.
Baršytė Lovejoy, Dalia
University of Toronto
Bashore, Frances M.
UNC Eshelman School of Pharmacy
Bengtson, Mário Henrique
Universidade Estadual de Campinas
Brown, Peter J.
UNC Eshelman School of Pharmacy
Burgess-Brown, Nicola A.
UCL School of Pharmacy
Cernak, Tim A.
University of Michigan, Ann Arbor
Clevert, Djork Arné
Pfizer Inc.
Coker, Jesse A.
Cleveland Clinic Foundation
Cornell, Wendy D.
International Business Machines
Couñago, Rafael Miguez
UNC Eshelman School of Pharmacy
Martínez Cuesta, Sergio
AstraZeneca
Diaz, Alejandra Solache
Abcam plc
Djordjevic, Snezana
UCL School of Pharmacy
Dou, Dengfeng
HitGen Inc.
Drewry, David Harold
UNC Eshelman School of Pharmacy
Duerr, Katharina L.
OMass Therapeutics Ltd
Edwards, Madison M.
University of Toronto
Engkvist, Ola
AstraZeneca Sweden
Fernández-Montalván, Amaury Ernesto
Boehringer Ingelheim International GmbH
Foschini, Luca
Sage Bionetworks
Gileadi, Opher
Karolinska Universitetssjukhuset
Gordijo, Claudia R.
University of Toronto
Guié, Marie Aude
X-Chem, Inc.
Günther, Judith
Bayer AG
Haibe-Kains, Benjamin
University of Toronto
Halabelian, Levon
University of Toronto
Hanke, Thomas
Goethe-Universität Frankfurt am Main
Harding, Rachel J.
University of Toronto
Hartung, Ingo V.
Merck KGaA
Holzinger, Emily Rose
Bristol-Myers Squibb
Häberle, Sandra
Goethe-Universität Frankfurt am Main
Johnson, Scott A.
Bristol-Myers Squibb
Kannt, Aimo
Fraunhofer-Institut für Translationale Medizin und Pharmakologie ITMP  
Keefe, Anthony D.
X-Chem, Inc.
Knapp, Stefan
Goethe-Universität Frankfurt am Main
Krieger, Florian
Evotec SE
Krämer, Oliver
Boehringer Ingelheim International GmbH
Leach, Andrew R.
EMBL’s European Bioinformatics Institute
Lessel, Uta F.
Boehringer Ingelheim International GmbH
Melliou, Sofia
University of Toronto
Michel, Maurice
Karolinska Institutet
Mobarec, Juan Carlos
AstraZeneca
Montel, Florian
Boehringer Ingelheim International GmbH
Morgan, Maxwell Robert
University of Toronto
Mueller-Fahrnow, Anke
Nuvisan Innovation Campus Berlin GmbH
Müller-Knapp, S.
Goethe-Universität Frankfurt am Main
O’Donnell, John P.
Bayer AG
Peng, Hui
University of Toronto
Petrović, Dušan
Nuvisan ICB GmbH
Rivers, Emma L.
AstraZeneca
Saikatendu, Kumar Singh
Takeda Pharmaceuticals U.S.A., Inc.
Santhakumar, Santha
University of Toronto
Schapira, Matthieu
University of Toronto
Holmberg-Schiavone, Lovisa
AstraZeneca Sweden
Schütt, Kristof T.
Pfizer Inc.
Shen, Min
National Institutes of Health (NIH)
de Souza, Lucas Rodrigo
Universidade Estadual de Campinas
Stauffer, Shaun R.
Cleveland Clinic Foundation
Steffen, Andreas
Pfizer Inc.
Sundström, Michael
Karolinska Universitetssjukhuset
Thamm, Sven
Boehringer Ingelheim International GmbH
Tjaden, Amelie
Goethe-Universität Frankfurt am Main
Todd, Matthew H.
UCL School of Pharmacy
Tredup, Claudia
Goethe-Universität Frankfurt am Main
Tropsha, Alexander E.
UNC Eshelman School of Pharmacy
Vernet, Erik
Novo Nordisk A/S
Walsh, Jarrod J.
AstraZeneca
Wang, Yanli
National Institutes of Health (NIH)
Wellnitz, James
UNC Eshelman School of Pharmacy
Willson, Timothy Mark
UNC Eshelman School of Pharmacy
Young, Damian W.
Baylor College of Medicine
Zhang, Leili
International Business Machines
Journal
Nature Reviews. Chemistry  
DOI
10.1038/s41570-025-00737-z
Language
English
Fraunhofer-Institut für Translationale Medizin und Pharmakologie ITMP  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024