• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Automated Quality Inspection in Additive Manufacturing for Lightweight Construction: A New Approach Based on Virtual Sonic Data and Machine Learning (ML-S-LeAF)
 
  • Details
  • Full
Options
April 2023
Conference Paper
Title

Automated Quality Inspection in Additive Manufacturing for Lightweight Construction: A New Approach Based on Virtual Sonic Data and Machine Learning (ML-S-LeAF)

Abstract
Powder bed fusion with laser beam describes a popular additive manufacturing technique that allows for the creation of complex three-dimensional shapes for lightweight construction. However, the current melting and solidification processes may introduce defects that lead to printed components that do not meet the desired product quality requirements and standards. Automated process monitoring may aid in exhausting the full potential of powder bed fusion by reducing rejects, saving resources at the same time, and subsequently ensuring high product quality. We therefore propose to utilize machine learning algorithms with training data obtained directly from in situ measurements using acoustic emissions sensors as well as numerically from supplementary acoustics simulations. Here we outline the project and give the strategic roadmap for developing reliable methods that are capable of recognizing deviations from common system operations in the printing process due to defects and other artifacts. This work includes a preview of intermediate results from first machine learning experiments. Additionally, an early comparison of measurement and simulation data is given.
Author(s)
Yildiz, Ömer Faruk
Novicos GmbH
Fritz, Alexander
OmegaLambdaTec GmbH
Storch, Julian
TU Darmstadt, Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen -PTW-  
Kátai, András  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Ribecky, Sebastian
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Hofmann, Peter  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Talagini Ashoka, Anitha Bhat
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Fassbender, Rene
OmegaLambdaTec GmbH
Marckmann, Hannes
Novicos GmbH
Grollmisch, Sascha  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Jansen, Stefan
C.F.K. CNC-Fertigungstechnik Kriftel GmbH
Adams, Christian  
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Kroh, Irina
OmegaLambdaTec GmbH
Zaleski, Olgierd
Novicos GmbH
Manohar, Aswin
OmegaLambdaTec GmbH
Keuchel, Sören
Novicos GmbH
Schröder, Thorben
Novicos GmbH
Ren, Yaxiong
TU Darmstadt Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik SAM
Boni, Christiano de
OmegaLambdaTec GmbH
Balestra, Italo
OmegaLambdaTec GmbH
Bös, Joachim  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Ferretti, Raphael
OmegaLambdaTec GmbH
Schötz, Johannes
OmegaLambdaTec GmbH
Merschroth, Holger
TU Darmstadt, Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen -PTW-  
Gross, Peter
TU Darmstadt, Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen -PTW-  
Weigold, Matthias
TU Darmstadt, Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen -PTW-  
Mainwork
DAGA 2023, 49. Jahrestagung für Akustik  
Conference
Deutsche Jahrestagung für Akustik 2023  
File(s)
Download (2.78 MB)
Rights
Use according to copyright law
DOI
10.24406/h-442659
Language
English
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Keyword(s)
  • maschine learning

  • additive manufacturing

  • lightweight construction

  • virtual sonic data

  • Analyse Industriegeräusche

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024