• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. A Framework for Internet Connectivity Risk Assessment Based on Graph Models
 
  • Details
  • Full
Options
2021
Conference Paper
Title

A Framework for Internet Connectivity Risk Assessment Based on Graph Models

Abstract
Autonomous systems (AS) that relay Internet traffic are not equally well connected. The failure of just a tiny portion of them can render multiple sites inaccessible and disconnect multiple service providers from the global network, while targeted attacks can severely impact Internet connectivity. Modeling Internet topology and measuring Internet connectivity can help determine Internet vulnerabilities and improve Internet performance. With this in mind, we have redesigned and implemented a framework called CORIA that enables the analysis of Internet connectivity risks using large network graphs. The requirements we set for the design include technological extensibility, combination of different data sets, intuitive and customizable user interface, rich visual representation of results, and performance efficiency.
Author(s)
Ermakova, Tatiana  
Weizenbaum-Institut, Berlin  
Benjamin, Fabian
Technische Hochschule Wildau  
Fradin, David
Humboldt-Universität zu Berlin  
Gross, Sebastian
Hochschule für Telekommunikation Leipzig
Mainwork
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021. Proceedings  
Project(s)
Deutsches Internet-Institut
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Web Intelligence and Intelligent Agent Technology 2021  
DOI
10.1145/3486622.3493980
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • Internet connectivity risk

  • Internet robustness

  • Autonomous systems

  • Parallel execution

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024