• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. μYOLO: Towards Single-Shot Object Detection on Microcontrollers
 
  • Details
  • Full
Options
2025
Conference Paper
Title

μYOLO: Towards Single-Shot Object Detection on Microcontrollers

Abstract
This work-in-progress paper presents results on the feasibility of single-shot object detection on microcontrollers using YOLO. Single-shot object detectors like YOLO are widely used, however due to their complexity mainly on larger GPU-based platforms. We present µYOLO, which can be used on Cortex-M based microcontrollers, such as the OpenMV H7 R2, achieving about 3.5 FPS when classifying 128 x 128 RGB images while using less than 800 KB Flash and less than 350 KB RAM. Furthermore, we share experimental results for three different object detection tasks, analyzing the accuracy of µYOLO on them.
Author(s)
Deutel, Mark
Friedrich-Alexander-Universität Erlangen-Nürnberg
Mutschler, Christopher  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Teich, J̈ürgen
Friedrich-Alexander-Universität Erlangen-Nürnberg
Mainwork
Machine Learning and Principles and Practice of Knowledge Discovery in Databases. International Workshops of ECML PKDD 2023. Pt.V  
Conference
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2023  
Open Access
DOI
10.1007/978-3-031-74643-7_13
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Microcontrollers

  • Object Detection

  • TinyML

  • YOLO

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024