• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. The influence of mass-transport conditions on the ethanol oxidation reaction (EOR) mechanism of Pt/C electrocatalysts
 
  • Details
  • Full
Options
2016
Journal Article
Title

The influence of mass-transport conditions on the ethanol oxidation reaction (EOR) mechanism of Pt/C electrocatalysts

Abstract
This study aims to provide further understanding of the influence of different parameters that control mass-transport (the revolution rate of the rotating disk electrode and the potential scan rate) on the ethanol oxidation reaction (EOR). The experiments were conducted on a home-made carbon-supported 20 wt% Pt/C electrocatalyst, synthesized using a modified polyol method, and characterized in terms of physicochemical properties by thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The EOR at the thin active layer of this electrocatalyst was characterized using both differential electrochemical mass spectrometry (DEMS) in a flow cell configuration and the rotating disc electrode (RDE). The results demonstrate that operating under stationary conditions (low scan rate and high RDE speed) hinders complete ethanol electrooxidation into CO2 and favors the poisoning of the electrocatalyst surface by hydroxide and strong ethanol adsorbates.
Author(s)
Bach Delpeuch, A.
Jacquot, M.
Chatenet, M.
Cremers, Carsten  orcid-logo
Journal
Physical chemistry, chemical physics : PCCP  
Open Access
DOI
10.1039/c6cp04294e
Language
English
Fraunhofer-Institut für Chemische Technologie ICT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024