• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Efficient MILP Decomposition in Quantum Computing for ReLU Network Robustness
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Efficient MILP Decomposition in Quantum Computing for ReLU Network Robustness

Abstract
Emerging quantum computing technologies, such as Noisy Intermediate-Scale Quantum (NISQ) devices, offer potential advancements in solving mathematical optimization problems. However, limitations in qubit availability, noise, and errors pose challenges for practical implementation. In this study, we examine two decomposition methods for Mixed-Integer Linear Programming (MILP) designed to reduce the original problem size and utilize available NISQ devices more efficiently. We concentrate on breaking down the original problem into smaller subproblems, which are then solved iteratively using a combined quantum-classical hardware approach. We conduct a detailed analysis for the decomposition of MILP with Benders and Dantzig-Wolfe methods. In our analysis, we show that the number of qubits required to solve Benders is exponentially large in the worst-case, while remains constant for Dantzig-Wolfe. Additionally, we leverage Dantzig-Wolfe decomposition on the use-case of certifying the robustness of ReLU networks. Our experimental results demonstrate that this approach can save up to 90% of qubits compared to existing methods on quantum annealing and gate-based quantum computers.
Author(s)
Franco, Nicola  
Fraunhofer-Institut für Kognitive Systeme IKS  
Wollschläger, Tom
Technische Universität München  
Günnemann, Stephan
Technische Universität München  
Poggel, Benedikt  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Lorenz, Jeanette Miriam  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Mainwork
IEEE Quantum Week 2023. Proceedings. Vol.III: Second IEEE Quantum Science and Engineering Education Conference, QSEEC 2023  
Project(s)
BayQC
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
International Conference on Quantum Computing and Engineering 2023  
Quantum Week 2023  
Quantum Science and Engineering Education Conference 2023  
Open Access
DOI
10.1109/QCE57702.2023.00066
10.24406/h-457798
File(s)
Franco_EfficientMILPDecompositionInQuantumComputingForReLUNetworkRobustness_2309_QCE_AuthorsVersion.pdf (548.11 KB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum computing

  • mixed-integer linear programming

  • hybrid algorithm

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024