• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion

Abstract
Many knowledge graphs (KG) contain spatial and temporal information. Most KG embedding models follow triple-based representation and often neglect the simultaneous consideration of the spatial and temporal aspects. Encoding such higher dimensional knowledge necessitates the consideration of true algebraic and geometric aspects. Hypercomplex algebra provides the foundation of a well defined mathematical system among which the Dihedron algebra with its rich framework is suitable to handle multidimensional knowledge. In this paper, we propose an embedding model that uses Dihedron algebra for learning such spatial and temporal aspects. The evaluation results show that our model performs significantly better than other adapted models.
Author(s)
Nayyeri, M.
Universität Bonn
Vahdati, S.
Institute for Applied Informatics (InfAI)
Khan, M.T.
Universität Bonn
Alam, M.M.
Institute for Applied Informatics (InfAI)
Wenige, L.
Institute for Applied Informatics (InfAI)
Behrend, A.
TH Köln
Lehmann, Jens  
Universität Bonn  
Mainwork
The semantic web. 19th International Conference, ESWC 2022  
Project(s)
Aufbau einer führenden Sprachassistenzplattform "Made in Germany"  
Funder
Bundesministerium für Wirtschaft und Klimaschutz  
Conference
European Semantic Web Conference 2022  
DOI
10.1007/978-3-031-06981-9_15
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Embedding

  • Knowledge graph

  • Spatio-temporal

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024