• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. A Stratified Pipeline for Vehicle Inpainting in Orthophotos
 
  • Details
  • Full
Options
2025
Conference Paper
Title

A Stratified Pipeline for Vehicle Inpainting in Orthophotos

Abstract
The paper outlines a pipeline for the removal of transient objects from orthophotos to enhance the clarity and utility for orthophotos in military and civilian geo-databases generation as the main application. The presented deep-learning-based pipeline includes detecting the objects of interest, masking them out, and using the image and an enhanced inpainting mask to fill in these areas seamlessly. The approach combines semantic segmentation, utilizing an adapted DeepLabv3+ model, with shadow detection using Particle Swarm Optimization, and concludes with a generative inpainting process using a three-stage Generative Adversarial Network (3GAN) system for edge, segmentation, and texture inpainting. This method is applied to a well-known remote sensing dataset for detailed analysis, highlighting the integrated approach’s effectiveness in creating realistic, cleaned-up orthophotos.
Author(s)
Kottler, Benedikt  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Qiu, Kevin
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Häufel, Gisela  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bulatov, Dimitri  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
Pattern Recognition. 27th International Conference, ICPR 2024. Proceedings. Part XXII  
Conference
International Conference on Pattern Recognition 2024  
DOI
10.1007/978-3-031-78312-8_8
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024