Options
2020
Journal Article
Title
Nucleation efficacy and flexural strength of novel leucite glass-ceramics
Abstract
Objectives. To optimize the nucleation mechanism in leucite glass-ceramics to allow more efficacious glass-ceramic manufacture and improvements in microstructure and mechanical reliability. Materials and methods. An alumino-silicate glass was designed and synthesized using melt quench methods. The glass was crushed and milled using various milling times (48-93 h) and spray drying. Nucleation and growth heat treatment schedules were applied to synthesize glass-ceramics. Glass/glass-ceramic powders and frit specimens were characterized using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), magic angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR) and X-ray diffraction analyses (XRD). Glass-ceramic specimens were tested using the biaxial flexural strength test (BFS). Results. Application of defined nucleation heat treatments resulted in the synthesis of Na/Ca titanates. NMR indicated changes to the 23Na glass spectra in the nucleated glass and TEM/EDX the presence of Na/Ca/Ti domains (<200 nm) within the leucite crystals and associated with the nucleation of the leucite phase. XRD confirmed the presence of a bulk leucite phase in the glass-ceramics. SEM/TEM confirmed the crystallization of the leucite phase (65.5-69.3%) in a thermally matched glass, in conjunction with the nano Na/Ca titanate phase. The leucite glass-ceramics resulted in a high BFS (255-268 MPa), with reduction in powder milling time prior to heat treatments having no significant effect on flexural strength and reliability (p > 0.05). Significance. Na/Ca titanates were synthesized in leucite glass-ceramics for the first time and associated with its nucleation and efficacious growth. This nucleation optimization provides opportunities for more efficient manufacturing and microstructural/mechanical reliability improvements. Improved synthesis of high strength/reliable leucite glass-ceramics is useful for construction of esthetic minimally invasive restorations.