Options
October 2022
Journal Article
Titel
Prognose von Qualitätsmerkmalen durch Anwendung von KI-Methoden beim "Directed Energy Deposition"
Abstract
Dieser Beitrag enthält die Ergebnisse eines im Rahmen der DVS Forschung entwickelten Ansatzes zur Qualitätssicherung im Directed Energy Deposition. Es basiert auf der Verarbeitung verschiedener während des Prozesses gesammelter Sensordaten unter Anwendung Künstlicher Neuronale Netze (KNN). So ließen sich die Qualitätsmerkmale Härte und Dichte auf der Datenbasis von 50 additiv gefertigten Probenwürfel mit einer Abweichung < 2 % vorhersagen. Des Weiteren wurde die Übertragbarkeit des KNN auf eine Schaufelgeometrie untersucht. Auch hier ließen sich Härte und Dichte hervorragend prognostizieren (Abweichung < 1,5 %), sodass der Ansatz als validiert betrachtet werden kann.
Author(s)