• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Support Estimation in Frequent Itemset Mining by Locality Sensitive Hashing
 
  • Details
  • Full
Options
2019
Conference Paper
Titel

Support Estimation in Frequent Itemset Mining by Locality Sensitive Hashing

Abstract
The main computational effort in generating all frequent itemsets in a transactional database is in the step of deciding whether an itemset is frequent, or not. We present a method for estimating itemset supports with two-sided error. In a preprocessing step our algorithm first partitions the database into groups of similar transactions by using locality sensitive hashing and calculates a summary for each of these groups. The support of a query itemset is then estimated by means of these summaries. Our preliminary empirical results indicate that the proposed method results in a speed-up of up to a factor of 50 on large datasets. The F-measure of the output patterns varies between 0.83 and 0.99.
Author(s)
Pick, Annika
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Horvath, Tamas
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Wrobel, Stefan
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Hauptwerk
Conference on "Lernen, Wissen, Daten, Analysen", LWDA 2019. Proceedings. Online resource
Konferenz
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2019
DOI
10.24406/publica-fhg-405299
File(s)
N-559246.pdf (202.62 KB)
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022