Options
2006
Conference Paper
Title
Micro force sensor with piezoresistive amorphous carbon strain gauge
Abstract
In this contribution we report for the first time on the successful integration of amorphous carbon (a-C) as a piezoresistive strain gauge into a silicon micro cantilever force sensor. Sputter-deposited a-C layers showing excellent tribological properties contain a percentage of nearly 20% of tetrahedral sp3 carbon bonds as observed by optical absorption and Raman spectroscopy. Temperature-dependent transport measurements revealed hopping conduction between conducting sp2 carbon sites embedded in the insulating skeletal matrix of sp3 bonds. Changing their distance by strain a change of resistivity could be expected, which was investigated with layers sputter-deposited on a silicon membrane and structured by the lift-off technique using photo resist. Cantilevers comprising a-C strain gauges were etched out of this membrane using tetra methyl ammonium hydroxide (TMAH) and potassium hydroxide (KOH) solutions in a bulk silicon micromachining process. Realised prototypes were tested by applying a variable load to the cantilever free end. We found linear characteristics of the strain gauge resistance versus the applied force in the range of 0 to ±600 µN revealing piezoresistive gauge factors of a-C within 36-46.