• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. AutoMat: Automatic differentiation for generalized standard materials on GPUs
 
  • Details
  • Full
Options
2022
Journal Article
Title

AutoMat: Automatic differentiation for generalized standard materials on GPUs

Abstract
We propose a universal method for the evaluation of generalized standard materials that greatly simplifies the material law implementation process. By means of automatic differentiation and a numerical integration scheme, AutoMat reduces the implementation effort to two potential functions. By moving AutoMat to the GPU, we close the performance gap to conventional evaluation routines and demonstrate in detail that the expression level reverse mode of automatic differentiation as well as its extension to second order derivatives can be applied inside CUDA kernels. We underline the effectiveness and the applicability of AutoMat by integrating it into the FFT-based homogenization scheme of Moulinec and Suquet and discuss the benefits of using AutoMat with respect to runtime and solution accuracy for an elasto-viscoplastic example.
Author(s)
Blühdorn, Johannes
Chair for Scientific Computing, Technische Universität Kaiserslautern
Gauger, Nicolas R.
Chair for Scientific Computing Technische Universität Kaiserslautern
Kabel, Matthias  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Computational mechanics  
Open Access
DOI
10.1007/s00466-021-02105-2
Additional link
Full text
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Automatic Differentiation

  • Generalized standard material

  • Numerical Methods for ODEs

  • FFT-Based Homogenization

  • GPU computing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024