• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving Zero-Shot Text Matching for Financial Auditing with Large Language Models
 
  • Details
  • Full
Options
August 22, 2023
Conference Paper
Title

Improving Zero-Shot Text Matching for Financial Auditing with Large Language Models

Abstract
Auditing financial documents is a very tedious and time-consuming process. As of today, it can already be simplified by employing AI-based solutions to recommend relevant text passages from a report for each legal requirement of rigorous accounting standards. However, these methods need to be fine-tuned regularly, and they require abundant annotated data, which is often lacking in industrial environments. Hence, we present ZeroShotALI, a novel recommender system that leverages a state-of-the-art large language model (LLM) in conjunction with a domain-specifically optimized transformer-based text-matching solution. We find that a two-step approach of first retrieving a number of best matching document sections per legal requirement with a custom BERT-based model and second filtering these selections using an LLM yields significant performance improvements over existing approaches.
Author(s)
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berger, Armin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Dilmaghani, Tim
PricewaterhouseCoopers AG
Khaled, Mohamed
PricewaterhouseCoopers AG
Kliem, B.
PricewaterhouseCoopers AG
Loitz, Rüdiger
PricewaterhouseCoopers GmbH
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Leonhard, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
DocEng 2023, ACM Symposium on Document Engineering. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung  
Conference
Symposium on Document Engineering 2023  
Open Access
File(s)
Download (614.24 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1145/3573128.3609344
10.24406/publica-2518
Additional link
Full text
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Large Language Models

  • Recommender System

  • Text Matching

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024