• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving Zero-Shot Text Matching for Financial Auditing with Large Language Models
 
  • Details
  • Full
Options
August 22, 2023
Conference Paper
Title

Improving Zero-Shot Text Matching for Financial Auditing with Large Language Models

Abstract
Auditing financial documents is a very tedious and time-consuming process. As of today, it can already be simplified by employing AI-based solutions to recommend relevant text passages from a report for each legal requirement of rigorous accounting standards. However, these methods need to be fine-tuned regularly, and they require abundant annotated data, which is often lacking in industrial environments. Hence, we present ZeroShotALI, a novel recommender system that leverages a state-of-the-art large language model (LLM) in conjunction with a domain-specifically optimized transformer-based text-matching solution. We find that a two-step approach of first retrieving a number of best matching document sections per legal requirement with a custom BERT-based model and second filtering these selections using an LLM yields significant performance improvements over existing approaches.
Author(s)
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berger, Armin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Dilmaghani, Tim
PricewaterhouseCoopers AG
Khaled, Mohamed
PricewaterhouseCoopers AG
Kliem, B.
PricewaterhouseCoopers AG
Loitz, Rüdiger
PricewaterhouseCoopers GmbH
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Leonhard, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
DocEng 2023, ACM Symposium on Document Engineering. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Symposium on Document Engineering 2023  
Open Access
File(s)
Download (614.24 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1145/3573128.3609344
10.24406/publica-2518
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Large Language Models

  • Recommender System

  • Text Matching

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024