• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. AIfES: A Next-Generation Edge AI Framework
 
  • Details
  • Full
Options
January 18, 2024
Journal Article
Title

AIfES: A Next-Generation Edge AI Framework

Abstract
Edge Artificial Intelligence (AI) relies on the integration of Machine Learning (ML) into even the smallest embedded devices, thus enabling local intelligence in real-world applications, e.g. for image or speech processing. Traditional Edge AI frameworks lack important aspects required to keep up with recent and upcoming ML innovations. These aspects include low flexibility concerning the target hardware and limited support for custom hardware accelerator integration. Artificial Intelligence for Embedded Systems Framework (AIfES) has the goal to overcome these challenges faced by traditional edge AI frameworks. In this paper, we give a detailed overview of the architecture of AIfES and the applied design principles. Finally, we compare AIfES with TensorFlow Lite for Microcontrollers (TFLM) on an ARM Cortex-M4-based System-on-Chip (SoC) using fully connected neural networks (FCNNs) and convolutional neural networks (CNNs). AIfES outperforms TFLM in both execution time and memory consumption for the FCNNs. Additionally, using AIfES reduces memory consumption by up to 54 % when using CNNs. Furthermore, we show the performance of AIfES during the training of FCNN as well as CNN and demonstrate the feasibility of training a CNN on a resource-constrained device with a memory usage of slightly more than 100 kB of RAM.
Author(s)
Wulfert, Lars  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Kühnel, Johannes
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Krupp, Lukas  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Viga, Justus
RWTH Aachen  
Wiede, Christian  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Gembaczka, Pierre  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Grabmaier, Anton  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Journal
IEEE Transactions on Pattern Analysis and Machine Intelligence  
Open Access
DOI
10.1109/TPAMI.2024.3355495
10.24406/publica-2499
File(s)
IEEE_Transactions_on_Pattern_Analysis_and_Machine_Intelligence_2024_Wulfert_EA.pdf (6.34 MB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • machine learning framework

  • edge AI framework

  • on-device training

  • embedded systems

  • resource-constrained devices

  • TinyML

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024