• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy
 
  • Details
  • Full
Options
2012
Journal Article
Titel

Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy

Abstract
Resistance spot welds were prepared on 3. mm thick sheets of continuous cast and rolled AZ31 magnesium alloy. The microstructure and composition analysis of weld nugget, heat affected zone (HAZ) and base metal were examined using optical and scanning electron microscopy (HR-SEM and EDS/X). The resistance spot welded magnesium alloy joints consist mainly of weld nugget and HAZ. The nugget contains two different structures, i.e. the cellular-dendritic structure at the edge of the nugget and the equiaxed dendritic structure in the centre of the nugget. The structure transition is attributed to the changes of solidification conditions. In the HAZ, grain boundary melting occurred and grain boundaries became coarse. It has been shown that hardness reduction in the weld nugget and HAZ compared with base metal is evident due to dendritic microstructure and grain growth, respectively. The results showed that spot welded joints have failed in interfacial mode under torsion and te nsile-shear loading conditions. Digital image correlation during tensile-shear testing showed that low surface strains occur in the interfacial failure mode, because fracture and deformation happened primarily in the nugget area.
Author(s)
Babu, N.K.
Brauser, S.
Rethmeier, M.
Cross, C.E.
Zeitschrift
Materials Science and Engineering, A. Structural materials, properties, microstructure and processing
Thumbnail Image
DOI
10.1016/j.msea.2012.04.021
Language
English
google-scholar
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022