• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. IALE: Imitating Active Learner Ensembles
 
  • Details
  • Full
Options
2022
Journal Article
Title

IALE: Imitating Active Learner Ensembles

Abstract
Active learning prioritizes the labeling of the most informative data samples. However, the performance of active learning heuristics depends on both the structure of the underlying model architecture and the data. We propose IALE1, an imitation learning scheme that imitates the selection of the best-performing expert heuristic at each stage of the learning cycle in a batch-mode pool-based setting. We use DAgger to train a transferable policy on a dataset and later apply it to different datasets and deep classifier architectures. The policy reects on the best choices from multiple expert heuristics given the current state of the active learning process, and learns to select samples in a complementary way that unifies the expert strategies. Our experiments on well-known image datasets show that we outperform state of the art imitation learners and heuristics.
Author(s)
Löffler, Christoffer  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mutschler, Christopher  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Journal
Journal of Machine Learning Research  
Link
Link
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • active learning

  • dataset aggregation

  • deep neural networks

  • imitation learning

  • transferable policy

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024