• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Arrhythmia classification using RR intervals: Improvement with sinusoidal regression feature
 
  • Details
  • Full
Options
2015
Conference Paper
Title

Arrhythmia classification using RR intervals: Improvement with sinusoidal regression feature

Abstract
Far too many people are dying from stroke or other heart related diseases each year. Early detection of abnormal heart rhythm could trigger the timely presentation to the emergency department or outpatient unit. Smartphones are an integral part of everyone's life and they form the ideal basis for mobile monitoring and real-time analysis of signals related to the human heart. In this work, we investigated the performance of arrhythmia classification systems using only features calculated from the time instances of individual heart beats. We built a sinusoidal model using N (N = 10, 15, 20) consecutive RR intervals to predict the (N+1)th RR interval. The integration of the innovative sinusoidal regression feature, together with the amplitude and phase of the proposed sinusoidal model, led to an increase in the mean class-dependent classification accuracies. Best mean class-dependent classification accuracies of 90% were achieved using a Nai&ve Bayes classifier. Well-performing realtime analysis arrhythmia classification algorithms using only the time instances of individual heart beats could have a tremendous impact in reducing healthcare costs and reducing the high number of deaths related to cardiovascular diseases.
Author(s)
Leutheuser, H.
Gradl, S.
Eskofier, B.M.
Tobola, A.
Lang, N.
Anneken, L.
Arnold, M.
Achenbach, S.
Mainwork
IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks, BSN 2015  
Conference
International Conference on Wearable and Implantable Body Sensor Networks (BSN) 2015  
DOI
10.1109/BSN.2015.7299371
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024