• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Dwelling Detection on VHR satellite imagery of Refugee/ IDP Camps using Faster R-CNN
 
  • Details
  • Full
Options
2019
Bachelor Thesis
Title

Dwelling Detection on VHR satellite imagery of Refugee/ IDP Camps using Faster R-CNN

Abstract
This Bachelor Thesis describes a new method for dwelling detection on Very High Resolution (VHR)-Satellite imagery using Faster-RCNN developed for the BMBF-project HUMAN+. HUMAN+ aims to develop a real-time situational awareness application for efficient migration management to guarantee humanitarian security. The described method and a corresponding workflow are used in a remote sensing module in the input layer of the HUMAN+ application. It analyses VHR-satellite images of refugee camps, finds all dwellings on the image and calculates an estimate of the number of tents (i.e. dwellings) and people in the camp. To find the dwellings, a Faster R-CNN is used. R-CNNs build a special neural network on a regular CNN to use them for object detection. This thesis describes the generation of training data, the training of a Faster R-CNN and the utilization of the trained Faster R-CNN in a dwelling detection application.
Thesis Note
Köln, TH, Bachelor Thesis, 2019
Author(s)
Wickert, Lorenz  
Person Involved
Fuhrmann, Arnulph
Bogen, Manfred
Publishing Place
Köln
Project(s)
HUMAN+
HUMAN+
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
DOI
10.24406/publica-fhg-282810
File(s)
N-559393.pdf (58.62 MB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • machine learning (ML)

  • Faster R-CNN

  • Remote Sensing (RS)

  • Dwelling Detection

  • object detection

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024