• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Evaluate Similarity of Requirements with Multilingual Natural Language Processing
 
  • Details
  • Full
Options
2022
Journal Article
Title

Evaluate Similarity of Requirements with Multilingual Natural Language Processing

Abstract
Finding redundant requirements or semantically similar ones in previous projects is a very time-consuming task in engineering design, especially with multilingual data. Due to modern NLP it is possible to automate such tasks. In this paper we compared different multilingual embeddings models to see which of them is the most suitable to find similar requirements in English and German. The comparison was done for both in-domain data (requirements pairs) and out-of-domain data (general sentence pairs). The most suitable model were sentence embeddings learnt with knowledge distillation.
Author(s)
Bisang, Ursina Saskia
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Brünnhäußer, Jörg
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Lünnemann, Pascal  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Kirsch, L.
Contact Software GmbH
Lindow, Kai  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Journal
Proceedings of the Design Society  
Conference
International Design Conference 2022  
Open Access
DOI
10.1017/pds.2022.153
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Keyword(s)
  • artificial intelligence (AI)

  • data-driven design

  • information management

  • natural language processing

  • requirements management

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024