• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Evaluating deep transfer learning for whole-brain cognitive decoding
 
  • Details
  • Full
Options
2023
Journal Article
Title

Evaluating deep transfer learning for whole-brain cognitive decoding

Abstract
Research in many fields has shown that transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples. This empirical success has triggered interest in the application of TL to cognitive decoding analyses with functional neuroimaging data. Here, we systematically evaluate TL for the application of DL models to the decoding of cognitive states (e.g., viewing images of faces or houses) from whole-brain functional Magnetic Resonance Imaging (fMRI) data. We first pre-train two DL architectures on a large, public fMRI dataset and subsequently evaluate their performance in an independent experimental task and a fully independent dataset. The pre-trained DL models consistently achieve higher decoding accuracies and generally require less training time and data than model variants that were not pre-trained, while also outperforming linear baseline models trained from scratch, clearly underlining the benefits of pre-training. We demonstrate that these benefits arise from the ability of the pre-trained models to reuse many of their learned features when training with new data, providing deeper insights into the mechanisms giving rise to the benefits of pre-training. Yet, we also surface nuanced challenges for whole-brain cognitive decoding with DL models when interpreting the decoding decisions of the pre-trained models, as these have learned to utilize the fMRI data in unforeseen and counterintuitive ways to identify individual cognitive states.
Author(s)
Thomas, Armin W.
Technische Universität Berlin
Lindenberger, Ulman
Max Planck Institute for Human Development
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Müller, Klaus-Robert
Technische Universität Berlin
Journal
Journal of the Franklin Institute  
Open Access
DOI
10.1016/j.jfranklin.2023.07.015
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024