• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Certifiably Robust Encoding Schemes
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Certifiably Robust Encoding Schemes

Abstract
Quantum machine learning uses principles from quantum mechanics to process data, offering potential advances in speed and performance. However, previous work has shown that these models are susceptible to attacks that manipulate input data or exploit noise in quantum circuits. Following this, various studies have explored the robustness of these models. These works focus on the robustness certification of manipulations of the quantum states. We extend this line of research by investigating the robustness against perturbations in the classical data for a general class of data encoding schemes. We show that for such schemes, the addition of suitable noise channels is equivalent to evaluating the mean value of the noiseless classifier at the smoothed data, akin to Randomized Smoothing from classical machine learning. Using our general framework, we show that suitable additions of phase-damping noise channels improve empirical and provable robustness for the considered class of encoding schemes.
Author(s)
Saxena, Aman
Technische Universität München  
Wollschläger, Tom
Technische Universität München  
Franco, Nicola  
Fraunhofer-Institut für Kognitive Systeme IKS  
Lorenz, Jeanette Miriam  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Günnemann, Stephan
Technische Universität München  
Mainwork
IEEE Quantum Week 2024. Proceedings. Volume III: Third IEEE Quantum Science and Engineering Education Conference, QSEEC 2024  
Project(s)
BayQS
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
Quantum Science and Engineering Education Conference 2024  
Quantum Week 2024  
Open Access
DOI
10.1109/QCE60285.2024.00184
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum machine learning

  • certifiable robustness

  • randomized smoothing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024