• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Performance Analysis of Bifacial PV Modules with Transparent Mesh Backsheet
 
  • Details
  • Full
Options
2021
Journal Article
Title

Performance Analysis of Bifacial PV Modules with Transparent Mesh Backsheet

Abstract
Due to their transparent rear side, bifacial modules can take advantage of rear side irradiance as opposed to monofacial modules. Glass or transparent backsheets are conventionally used as rear side encapsulation material. To increase coupling gains achieved through internal reflection at the module rear side, a white or reflecting mesh structure can be applied in the areas between the cells on the rear side material. In this study, an existing optical model based on a simplified ray tracing approach is extended to describe the effects achieved though this mesh structure. The model is further integrated into a complete cell-to-module loss and gain analysis. The performance of the mesh backsheet concept is assessed under varying parameters. The impact of mesh reflectance, bifaciality of the cell and width of the mesh compared to the cell spacing are investigated. Losses due to increased module temperature and gains due to internal reflection gains are compared. We confirm that the optimal power gain can be achieved when the width of the mesh is the same as the spacing between the cells. We find that the power gain due to the improved internal reflection outweighs the power loss due to increased module temperature.
Author(s)
Jang, Juhee
Korea Polytechnic University
Pfreundt, Andrea
Fraunhofer-Institut für Solare Energiesysteme ISE  
Mittag, Max  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Lee, Kyungsoo
Korea Polytechnic University
Journal
Energies  
Open Access
DOI
10.3390/en14051399
10.24406/H-268609
File(s)
energies-14-01399.pdf (5.11 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • cell-to-module

  • Digital simulation

  • PV module

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024