• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. SiD2Re - A novel simulation framework for drifting regression data
 
  • Details
  • Full
Options
2023
Conference Paper
Title

SiD2Re - A novel simulation framework for drifting regression data

Abstract
Applying supervised machine learning techniques to data streams in non-stationary environments is a challenge that has to be overcome in order to exploit the potentials of machine learning in the context of industrial production. Particularly for regression learning tasks, there is a major need for novel methods to overcome these challenges. In this work we formalize the understanding of data drifts and concept drifts and explain how changes in the process environment can lead to a degradation in model performance. Further, we introduce the Simulator of Drifting Data in Regression problem (SiD2Re) for generating benchmark datasets laying the foundation for comparing new algorithms for drift detection and drift adaptation with respect to various drift characteristics.
Author(s)
Hasterok, Constanze  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Hermes, Jan
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Stratmann, Benedikt
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IEEE 21st International Conference on Industrial Informatics, INDIN 2023  
Project(s)
Kollaborative Smart Services für industrielle Wertschöpfungsnetze in GAIA-X  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Industrial Informatics 2023  
DOI
10.1109/indin51400.2023.10218255
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • simulation framework

  • concept drift

  • machine learning

  • regression

  • non-stationary data streams

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024