• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. High ODMR contrast and alignment of NV centers in microstructures grown on heteroepitaxial diamonds
 
  • Details
  • Full
Options
2024
Journal Article
Title

High ODMR contrast and alignment of NV centers in microstructures grown on heteroepitaxial diamonds

Abstract
Heteroepitaxial chemical vapor deposition is the most promising option to fabricate wafer-scale monocrystalline diamonds for quantum applications. Previously, we demonstrated the feasibility to manufacture functional micrometer-sized pyramids on as-grown heteroepitaxial diamond as well as their quantum optical characteristics. Due to high background signals and microfabrication challenges, these pyramids could not compete with homoepitaxially grown structures. In this study, we overcame these problems with a nominally undoped buffer layer between the heteroepitaxial substrate and the pyramidal microstructure to reduce the signal-to-noise ratio from the substrate on the spin measurements of the nitrogen-vacancy (NV) center. Moreover, the microfabrication was improved to reach a higher angle of the pyramidal side plane, corresponding to the {111} facets. These improvements lead to pyramids on which each facet contains almost purely only one of the four possible NV orientations as shown by optically detected magnetic resonance (ODMR). ODMR shows a very high contrast of 19% without an external magnet and of 13% for a single spin resonance in the presence of a magnetic field. The contrast is more than doubled compared to our previous study. The T2* dephasing time of the NV centers of the samples ranges from 0.02 to 0.16 μs. The P1 center is a single substitutional nitrogen center, and the P1 densities range from 1.8 to 5 ppm.
Author(s)
Engels, Jan  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Weippert, Jürgen  orcid-logo
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Luo, Tingpeng
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Kustermann, Jan  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Quellmalz, Patricia  orcid-logo
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Mathes, Niklas
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Lindner, Lukas
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Giese, Christian  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Kirste, Lutz  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Knittel, Peter  orcid-logo
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Jeske, Jan  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Lebedev, Vadim  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Journal
Applied Physics Letters  
Project(s)
GroDiaQ
Leveraging room temperature diamond quantum dynamics to enable safe, first-of-its-kind, multimodal cardiac imaging  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
European Commission  
Open Access
File(s)
Download (3.2 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1063/5.0209717
10.24406/h-466775
Language
English
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024