• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A deep learning approach for complex microstructure inference
 
  • Details
  • Full
Options
2021
Journal Article
Title

A deep learning approach for complex microstructure inference

Abstract
Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learnings seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 3050 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology.
Author(s)
Durmaz, A.R.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Müller, M.
Saarland University, Saarbrücken; Material Engineering Center Saarland, Saarbrücken
Lei, B.
Carnegie Mellon University, Pittsburgh, USA
Thomas, A.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Britz, D.
Saarland University, Saarbrücken; Material Engineering Center Saarland, Saarbrücken
Holm, E.A.
Carnegie Mellon University, Pittsburgh, USA
Eberl, C.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Mücklich, F.
Saarland University, Saarbrücken; Material Engineering Center Saarland, Saarbrücken
Gumbsch, P-
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
Nature Communications  
Funder
Bosch-Forschungsstiftung im Stifterverband
Open Access
DOI
10.1038/s41467-021-26565-5
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • micrographs

  • process-microstructure-property relations

  • Tailored Materials Development

  • Advanced Segmentation Methodologies

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024