• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Data mining and machine learning methods applied to a numerical clinching model
 
  • Details
  • Full
Options
2018
Journal Article
Title

Data mining and machine learning methods applied to a numerical clinching model

Other Title
Data mining und maschinelle Lernverfahren für ein numerisches Clinchmodell
Abstract
Numerical mechanical models used for design of structures and processes are very complex and high-dimensionally parametrised. The understanding of the model characteristics is of interest for engineering tasks and subsequently for an efficient design. Multiple analysis methods are known and available to gain insight into existing models. In this contribution, selected methods from various fields are applied to a real world mechanical engineering example of a currently developed clinching process. The selection of introduced methods comprises techniques of machine learning and data mining, in which the utilization is aiming at a decreased numerical effort. The methods of choice are basically discussed and references are given as well as challenges in the context of meta-modelling and sensitivities are shown. An incremental knowledge gain is provided by a step-by step application of the numerical methods, whereas resulting consequences for further applications are highlighted. Furthermore, a visualisation method aiming at an easy design guideline is proposed. These visual decision maps incorporate the uncertainty coming from the reduction of dimensionality and can be applied in early stage of design.
Author(s)
Götz, Marco
Technische Universität, Dresden, Institut für Statik und Dynamik der Tragwerke
Leichsenring, Ferenc
Technische Universität, Dresden, Institut für Statik und Dynamik der Tragwerke
Kropp, Thomas  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Müller, Peter  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Falk, Tobias  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Graf, Wolfgang
Technische Universität, Dresden, Institut für Statik und Dynamik der Tragwerke
Kaliske, Michael
Technische Universität, Dresden, Institut für Statik und Dynamik der Tragwerke
Drossel, Welf-Guntram  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Journal
Computer modeling in engineering & sciences : CMES  
Open Access
DOI
10.31614/cmes.2018.04112
Language
English
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Keyword(s)
  • design

  • data mining

  • computational intelligence

  • meta-modelling

  • permissible design space

  • sensitivity analysis

  • self-organizing map

  • inverse problem

  • early stage of design

  • clinching

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024