• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Energy-efficient hardware architectures for the packet data convergence protocol in LTE-advanced mobile terminals
 
  • Details
  • Full
Options
2013
Journal Article
Title

Energy-efficient hardware architectures for the packet data convergence protocol in LTE-advanced mobile terminals

Abstract
In this paper, we present and compare efficient low-power hardware architectures for accelerating the Packet Data Convergence Protocol (PDCP) in LTE and LTE-Advanced mobile terminals. Specifically, our work proposes the design of two cores: a crypto engine for the Evolved Packet System Encryption Algorithm (128-EEA2) that is based on the AES cipher and a coprocessor for the Least Significant Bit (LSB) encoding mechanism of the Robust Header Compression (ROHC) algorithm. With respect to the former, first we propose a reference architecture, which reflects a basic implementation of the algorithm, then we identify area and power bottle-necks in the design and finally we introduce and compare several architectures targeting the most power-consuming operations. With respect to the LSB coprocessor, we propose a novel implementation based on a one-hot encoding, thereby reducing hardware's logic switching rate. Architectural hardware analysis is performed using Faraday's 90 nm standard-cell library. The obtained results, when compared against the reference architecture, show that these novel architectures achieve significant improvements, namely, 25% in area and 35% in power consumption for the 128-EEA2 crypto-core, and even more important reductions are seen for the LSB coprocessor, that is, 36% in area and 50% in power consumption.
Author(s)
Traboulsi, S.
Frascolla, V.
Pohl, N.
Hausner, J.
Bilgic, A.
Journal
VLSI design  
Open Access
DOI
10.1155/2013/369627
Link
Link
Language
English
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024