• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Quantum Optimization: Potential, Challenges, and the Path Forward
 
  • Details
  • Full
Options
2023
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Quantum Optimization: Potential, Challenges, and the Path Forward

Title Supplement
Published on arXiv
Abstract
Recent advances in quantum computers are demonstrating the ability to solve problems at a scale beyond brute force classical simulation. As such, a widespread interest in quantum algorithms has developed in many areas, with optimization being one of the most pronounced domains. Across computer science and physics, there are a number of algorithmic approaches, often with little linkage. This is further complicated by the fragmented nature of the field of mathematical optimization, where major classes of optimization problems, such as combinatorial optimization, convex optimization, non-convex optimization, and stochastic extensions, have devoted communities. With these aspects in mind, this work draws on multiple approaches to study quantum optimization. Provably exact versus heuristic settings are first explained using computational complexity theory - highlighting where quantum advantage is possible in each context. Then, the core building blocks for quantum optimization algorithms are outlined to subsequently define prominent problem classes and identify key open questions that, if answered, will advance the field. The effects of scaling relevant problems on noisy quantum devices are also outlined in detail, alongside meaningful benchmarking problems. We underscore the importance of benchmarking by proposing clear metrics to conduct appropriate comparisons with classical optimization techniques. Lastly, we highlight two domains - finance and sustainability - as rich sources of optimization problems that could be used to benchmark, and eventually validate, the potential real-world impact of quantum optimization.
Author(s)
Abbas, Amira
QuSoft
Ambainis, Andris
University of Latvia
Augustino, Brandon
Massachusetts Institute of Technology
Bärtschi, Andreas
Los Alamos National Laboratory
Buhrman, Harry
QuSoft
Coffrin, Carleton
Los Alamos National Laboratory
Cortiana, Giorgio
E.ON Digital Technology
Dunjko, Vedran
Leiden University  
Egger, Daniel J.
IBM Quantum, IBM Research Europe
Elmegreen, Bruce G.
IBM Research, IBM T.J. Watson Research Center
Fratini, Filippo
Erste Group Bank
Franco, Nicola  
Fraunhofer-Institut für Kognitive Systeme IKS  
Fuller, Bryce
IBM Quantum, IBM T.J. Watson Research Center
Gacon, Julien
IBM Quantum, IBM Research Europe
Gonciulea, Constantin
Wells Fargo
Gribling, Sander
Tilburg University  
Gupta, Swati
Massachusetts Institute of Technology
Hadfield, Stuart
Quantum Artificial Intelligence Lab, NASA Ames Research Center
Heese, Raoul  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Kircher, Gerhard
Erste Group Bank
Kleinert, Thomas
Quantagonia
Koch, Thorsten
Zuse Institute Berlin
Korpas, Georgios
HSBC Lab, Innovation and Ventures, HSBC, London
Lenk, Steve
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Marecek, Jakub
Czech Technical University  
Markov, Vanio
Wells Fargo
Marecek, Jakub
Czech Technical University  
Mazzola, Guglielmo
University of Zurich
Mensa, Stefano
The Hartree Centre, STFC
Lenk, Steve
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mohseni, Naeimeh
E.ON Digital Technology
Nannicini, Giacomo
University of Southern California
O’Meara, Corey
E.ON Digital Technology
Prokutta, Sebastian
Zuse Institute Berlin
Proissel, Manuel
IBM Quantum, IBM Research Europe
Sahin, Emre
The Hartree Centre, STFC
Rebentrost, Patrick
National University of Singapore  
Symons, Benjamin C.B.
The Hartree Centre, STFC
Tornow, Sabine
Universität der Bundeswehr München
Valls, Victor
IBM Quantum, IBM Research Europe
Woerner, Stefan
IBM Quantum, IBM Research Europe
Wolf-Bauwens, Mira L.
IBM Quantum, IBM Research Europe
Yard, Jon
University of Waterloo
Zechiel, Dirk
Quantagonia
Yarkoni, Sheir
Volkswagen AG  
Zhuk, Sergiy
IBM Quantum, IBM Research Europe
Zoufal, Christa
IBM Quantum, IBM Research Europe
Peña Tapia, Elena
Leiden University  
Open Access
File(s)
Download (1.42 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.48550/arXiv.2312.02279
10.24406/publica-3047
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum computing

  • quantum algorithm

  • quantum advantage

  • quantum optimization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024