• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Demo: CARLA-based Adversarial Attack Assessment on Autonomous Vehicles
 
  • Details
  • Full
Options
August 6, 2024
Conference Paper
Title

Demo: CARLA-based Adversarial Attack Assessment on Autonomous Vehicles

Abstract
Autonomous vehicles rely on a combination of sensors and sophisticated artificial intelligence (AI) systems to perceive their surroundings. The increasing use of AI in autonomous driving technology has brought to our attention the concerns of the implications of AI failure. In this work, we chose an object detector (OD) as an entry point to study the robustness against adversarial attacks like malicious traffic signs. We design and implement CARLA-A3 (CARLA-based Adversarial Attack Assessment), which is a toolkit aimed to streamline the simulation of adversarial conditions and evaluation of OD with several robustness metrics. The toolkit can serve to rapidly and quantitatively evaluate the effects of a malicious sign presented to the OD.
Author(s)
Lan, Zirui
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Choong, Wei Herng
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Kao, Ching-Yu Franziska
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Wang, Yi
Dehm, Mathias
Sperl, Philip  
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Böttinger, Konstantin  
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Kasper, Michael
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
Mainwork
Symposium on Vehicles Security and Privacy, VehicleSec 2024  
Conference
Symposium on Vehicles Security and Privacy 2024  
Network and Distributed System Security Symposium 2024  
Open Access
File(s)
Download (82.32 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.14722/vehiclesec.2024.25004
10.24406/publica-3530
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024