• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A flexible framework for mobile device forensics based on cold boot attacks
 
  • Details
  • Full
Options
2016
Journal Article
Title

A flexible framework for mobile device forensics based on cold boot attacks

Abstract
Mobile devices, like tablets and smartphones, are common place in everyday life. Thus, the degree of security these devices can provide against digital forensics is of particular interest. A common method to access arbitrary data in main memory is the cold boot attack. The cold boot attack exploits the remanence effect that causes data in DRAM modules not to lose the content immediately in case of a power cut-off. This makes it possible to restart a device and extract the data in main memory. In this paper, we present a novel framework for cold boot-based data acquisition with a minimal bare metal application on a mobile device. In contrast to other cold boot approaches, our forensics tool overwrites only a minimal amount of data in main memory. This tool requires no more than three kilobytes of constant data in the kernel code section. We hence sustain all of the data relevant for the analysis of the previously running system. This makes it possible to analyze the memory with data acquisition tools. For this purpose, we extend the memory forensics tool Volatility in order to request parts of the main memory dynamically from our bare metal application. We show the feasibility of our approach on the Samsung Galaxy S4 and Nexus 5 mobile devices along with an extensive evaluation. First, we compare our framework to a traditional memory dump-based analysis. In the next step, we show the potential of our framework by acquiring sensitive user data.
Author(s)
Huber, M.
Taubmann, B.
Wessel, S.
Reiser, H.P.
Sigl, G.
Journal
EURASIP journal on information security  
Open Access
Link
Link
DOI
10.1186/s13635-016-0041-4
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024