• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Variational Quanvolutional Neural Networks with enhanced image encoding
 
  • Details
  • Full
Options
2021
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Variational Quanvolutional Neural Networks with enhanced image encoding

Abstract
Image classification is an important task in various machine learning applications. In recent years, a number of classification methods based on quantum machine learning and different quantum image encoding techniques have been proposed. In this paper, we study the effect of three different quantum image encoding approaches on the performance of a convolution-inspired hybrid quantum-classical image classification algorithm called quanvolutional neural network (QNN). We furthermore examine the effect of variational - i.e. trainable - quantum circuits on the classification results. Our experiments indicate that some image encodings are better suited for variational circuits. However, our experiments show as well that there is not one best image encoding, but that the choice of the encoding depends on the specific constraints of the application.
Author(s)
Mattern, Denny  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Martyniuk, Darya  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Willems, Henri
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Bergmann, Fabian
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Paschke, Adrian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Project(s)
PlanQK
Funder
Bundesministerium fur Wirtschaft und Energie BMWi (Deutschland)  
Link
Link
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • QNN

  • Quanvolutional Neural Networks

  • quantum computing

  • Quantum AI

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024