• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
 
  • Details
  • Full
Options
2024
Journal Article
Title

Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK

Abstract
Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated, simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
Author(s)
Kiwit, Florian J.
Ludwig-Maximilians-Universität München
Wolf, Maximilian A.
Ludwig-Maximilians-Universität München
Marso, Marwa
Ludwig-Maximilians-Universität München
Ross, Philipp
BMW Group  
Lorenz, Jeanette Miriam  orcid-logo
Ludwig-Maximilians-Universität München
Riofrío, Carlos A.
BMW Group  
Luckow, Andre
Ludwig-Maximilians-Universität München
Journal
Künstliche Intelligenz : KI  
Open Access
DOI
10.1007/s13218-024-00864-7
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum computing

  • machine learning

  • ML

  • noise resilience

  • generative modeling

  • benchmark framework

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024