• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Efficient abrasive water jet milling for near-net-shape fabrication of difficult-to-cut materials
 
  • Details
  • Full
Options
2020
Journal Article
Title

Efficient abrasive water jet milling for near-net-shape fabrication of difficult-to-cut materials

Abstract
The utilization of materials with high strength to density ratio enables efficiency improvements and is therefore demanded for many applications, particularly in the aerospace and other mobility sectors. However, the machining of these typically difficult-to-cut materials poses a challenge for conventional manufacturing technologies due to the high tool wear. Abrasive water jet (AWJ) machining is a promising alternative manufacturing technology for machining difficult-to-cut materials, since the tool wear is low and material independent. However, AWJ machining is limited regarding the producible geometries when conducting cuts through a material. This limitation can be resolved with AWJ milling operations which on the other hand are time-consuming. To approach this challenge, an enhanced AWJ milling operation is presented and investigated in this paper with the aim to expand the producible geometries. This operation consists of two kerfs, inserted from different sides of the workpiece, which intersect at their kerf ground. Consequently, a piece of material is separated without the cut material being entirely chipped. Thus, the operation possesses a high aggregated material removal rate. The investigations presented in this paper show and evaluate the effects that occur during the milling of kerfs with variable depths on titanium aluminide TNM-B1. Furthermore, a method to compensate these effects is introduced and thus the producible geometries for effective AWJ milling could be enhanced.
Author(s)
Uhlmann, Eckart  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Männel, Constantin
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Braun, Thomas  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Journal
The International Journal of Advanced Manufacturing Technology  
Funder
Deutsche Forschungsgemeinschaft DFG  
Open Access
DOI
10.1007/s00170-020-06074-3
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024