• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Active or passive fiber-chip-alignment: Approaches to efficient solutions
 
  • Details
  • Full
Options
2013
Conference Paper
Title

Active or passive fiber-chip-alignment: Approaches to efficient solutions

Abstract
High precision approaches for active and passive alignment and assembly on optoelectronic micro benches have been realized at Fraunhofer IZM for various material systems and different scales. The alignment and reliable mounting of optical subcomponents such as semiconductor laser and photo diodes, micro lenses and micro prisms require far higher mounting and alignment accuracies than for micro-electronic parts. When connecting from silicon photonics chip level to single mode optical fibers, even higher precisions are called for (typically < 100 nm). Alignment and assembly commonly are performed on specialized lab equipment which needs manual operation, consuming a lot of time, with less possibilities for automation. To introduce a higher degree of automatized production, like it has become standard in large volume electronics, one can choose either active or passive alignment processes - or possibly a combination of both. In this article we will present examples of micr o-optic benches and optical interconnections that include alignment structures for passive alignment - where the accuracy lies in the components to be assembled, and mounting takes place on a less accurate machine ("fit into place"). But there is also a lot of progress on optical pick, measure and place machines that realize a flexible and fully automated active alignment using vision systems and activated components of less cost, with machine and process robustness for usability in industrial environments. As connecting elements, passive optical components like optical fibers are commonly used. These fragile and flexible elements pose additional challenges in secure picking, placing and fixing, at long lengths vs. small diameters. A very recent and specific approach to use more robust plastic optical fibers (POF) for very short and cost effective optical interconnects by means of wire bonding machines will be presented.
Author(s)
Böttger, G.
Schröder, H.
Jordan, R.
Mainwork
Optoelectronic interconnects XIII  
Conference
Conference "Optoelectronic Interconnects" 2013  
DOI
10.1117/12.2014176
Language
English
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024